PageRank variants in the evaluation of citation networks

نویسندگان

  • Michal Nykl
  • Karel Jezek
  • Dalibor Fiala
  • Martin Dostál
چکیده

This paper explores a possible approach to a research evaluation, by calculating the renown of authors of scientific papers. The evaluation is based on the citation analysis and its results should be close to a human viewpoint. The PageRank algorithm and its modifications were used for the evaluation of various types of citation networks. Our main research question was whether better evaluation results were based directly on an author network or on a publication network. Other issues concerned, for example, the determination of weights in the author network and the distribution of publication scores among their authors. The citation networks were extracted from the computer science domain in the ISI Web of Science database. The influence of self-citations was also explored. To find the best network for a research evaluation, the outputs of PageRank were compared with lists of prestigious awards in computer science such as the Turing and Codd award, ISI Highly Cited and ACM Fellows. Our experiments proved that the best ranking of authors was obtained by using a publication citation network from which self-citations were eliminated, and by distributing the same proportional parts of the publications’ values to their authors. The ranking can be used as a criterion for the financial support of research teams, for identifying leaders of such teams, etc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-aware PageRank for bibliographic networks

In the past, recursive algorithms, such as PageRank originally conceived for the Web, have been successfully used to rank nodes in the citation networks of papers, authors, or journals. They have proved to determine prestige and not popularity, unlike citation counts. However, bibliographic networks, in contrast to the Web, have some specific features that enable the assigning of different weig...

متن کامل

Exploration and Evaluation of Citation Networks

This paper deals with the definitions, explanations and testing of the PageRank formula modified and adapted for bibliographic networks. Our modifications of PageRank take into account not only the citations but also the coauthorship relationships. We verified the capabilities of the developed algorithms by applying them to the data from the DBLP digital library and subsequently by comparing th...

متن کامل

The Evaluation of the Team Performance of MLB Applying PageRank Algorithm

Background. There is a weakness that the win-loss ranking model in the MLB now is calculated based on the result of a win-loss game, so we assume that a ranking system considering the opponent’s team performance is necessary. Objectives. This study aims to suggest the PageRank algorithm to complement the problem with ranking calculated with winning ratio in calculating team ranking of US MLB. ...

متن کامل

Applying weighted PageRank to author citation networks

This paper aims to identify whether different weighted PageRank algorithms can be applied to author citation networks to measure the popularity and prestige of a scholar from a citation perspective. Information Retrieval (IR) was selected as a test field and data from 1956-2008 were collected from Web of Science (WOS). Weighted PageRank with citation and publication as weighted vectors were cal...

متن کامل

PageRank for ranking authors in co-citation networks

This paper studies how varied damping factors in the PageRank algorithm influence the ranking of authors and proposes weighted PageRank algorithms. We selected the 108 most highly cited authors in the information retrieval (IR) area from the 1970s to 2008 to form the author co-citation network. We calculated the ranks of these 108 authors based on PageRank with the damping factor ranging from 0...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Informetrics

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014